Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches.
نویسندگان
چکیده
Most recently, stimuli-responsive luminescent materials have attracted increasing interest because they can exhibit tunable emissive properties which are sensitive to external physical stimuli, such as light, temperature, force, and electric field. Among these stimuli, electric field is an important external stimulus. However, examples of electrochromic luminescent materials that exhibit emission color change induced by an electric field are limited. Herein, we have proposed a new strategy to develop electrochromic luminescent materials based on luminescent ion pairs. Six tunable emissive ion pairs (IP1-IP6) based on iridium(iii) complexes have been designed and synthesized. The emission spectra of ion pairs (IPs) show concentration dependence and the energy transfer process is very efficient between positive and negative ions. Interestingly, IP6 displayed white emission at a certain concentration in solution or solid state. Thus, in this contribution, UV-chip (365 nm) excited light-emitting diodes showing orange, light yellow and white emission colors were successfully fabricated. Furthermore, IPs displayed tunable and reversible electrochromic luminescence. For example, upon applying a voltage of 3 V onto the electrodes, the emission color of the solution of IP1 near the anode or cathode changed from yellow to red or green, respectively. Color tunable electrochromic luminescence has also been realized by using other IPs. Finally, a solid-film electrochromic switch device with a sandwiched structure using IP1 has been fabricated successfully, which exhibited fast and reversible emission color change.
منابع مشابه
Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches† †Electronic supplementary information (ESI) available: Details of NMR and MS spectra. See DOI: 10.1039/c6sc02837c Click here for additional data file.
متن کامل
Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF.
Metal-organic frameworks (MOFs) are a rapidly growing class of hybrid materials with many multifunctional properties. The permanent porosity plays a central role in the functional properties. In particular, the luminescent MOFs with a permanent porosity have wide applications in guest species recognition and adsorption. In this contribution, we aim to develop tunable colors and white-light lumi...
متن کاملComposite Supraparticles with Tunable Light Emission
Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we ...
متن کاملInfluences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)
In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...
متن کاملA novel class of phosphorescent gold(III) alkynyl-based organic light-emitting devices with tunable colour.
A novel class of luminescent cyclometalated gold(III) alkynyl complexes has been demonstrated to possess EL properties and has been employed in the roles of electrophosphorescent emitters or dopants of organic light-emitting diodes (OLEDs) with high brightness and efficiency.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2017